Evaluating Factors Impacting the Accuracy of Forced Alignments in a Multimodal Corpus

People, when processing human-to-human communication, utilize everything they can in order to understand that communication, including speech and information such as the time and location of an interlocutor's gesture and gaze. Speech and gesture are known to exhibit a synchronous relationship in human communication; however, the precise nature of that relationship requires further investigation. The construction of computer models of multimodal human communication would be enabled by the availability of multimodal communication corpora annotated with synchronized gesture and speech features. To investigate the temporal relationships of these knowledge sources, we have collected and are annotating several multimodal corpora with time-aligned features. Forced alignment between a speech file and its transcription is a crucial part of multimodal corpus production. This paper investigates a number of factors that may contribute to highly accurate forced alignments to support the rapid production of these multimodal corpora including the acoustic model, the match between the speech used for training the system and that to be force aligned, the amount of data used to train the ASR system, the availability of speaker adaptation, and the duration of alignment segments
Published in 2004